

MERU UNIVERSITY OF SCIENCE AND TECHNOLOGY

P.O. Box 972-60200 - Meru-Kenya. Tel: +254 (0)799529958, +254 (0)799529959, +254 (0)712524293 Website: <u>www.must.ac.ke</u> Email: <u>info@must.ac.ke</u>

University Examinations 2020/2021

SUPPLEMENTARY/SPECIAL EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN MATHEMATICS AND COMPUTER,

SUPPLEMENTARY/SPECIAL EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN EDUCATION SCIENCE

SMA 3352: ODE 2

DATE: APRIL 2022 TIME: 2 HOURS

INSTRUCTIONS: Answer question **one** and any other **two** questions

QUESTION ONE (30 MARKS)

a) Find the wronsklan of e^t , e^{2t} , e^{-st}

(3 marks)

b) Solve the system below using matrix method

(7 marks)

$$\frac{dx}{dt} = 3x + 4y$$

$$\frac{dy}{dt} = -2x - 3y$$

- c) Show that y=x is a solution of the equation $x^2y^{II} 4xy^I + 4y = 0$, hence solve the equation (8 marks)
- d) Show that the following equation is non-linear giving reasons

$$5x\frac{d^4y}{dx^4} - 3x\frac{d^3y}{dx^3} \cdot \frac{dy}{dx} + 2\left(\frac{dy}{dx}\right)^2 + 9y^2 = 0$$
 (3 marks)

- e) Locate and classify the singular points of the equation $(x^2 8x)\frac{d^2y}{dx^2} + (x+2)\frac{dy}{dx} + y = 0$ (6 marks)
- f) Write down the Legendre differential equation and show its singularity (3 marks)

QUESTION TWO (20 MARKS)

- a) Verify that the total differential equation is solvable $3x^2dx + 3y^2dy (x^3 + y^3 + e^{2z})dz = 0$, if so, solve by taking one of the variables as constant (12 marks)
- b) Solve the non-linear differential equation $\frac{d^2y}{dx^2} \sin \frac{dy}{dx} = \sin x$ which satisfies the conditions y(1)=2 and $y^1(1)=1$ (8 marks)

QUESTION THREE (20 MARKS)

- a) Obtain the power senes solution of the equation $\frac{dy}{dx} = y$ in ascending powers of x and hence solve the equation (12 marks)
- b) Show that Legendre polynomial of order 1 is x (8 marks) $P_1(x) = x$

QUESTION FOUR (20 MARKS)

- a) Bessel's differential equation is given by $x^2y^{11} + xy^1 p^2y = 0$. Define it's singularity and the nature of its power series solution (6 marks)
- b) Show that x=0 is an ordinary point of the equation $(x^2 1)\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + xy = 0$ (3 marks)
- c) Find the power series solution of $(x^2 1)y^{11} + 3xy^1 + xy = 0$. (11 marks)

QUESTION FIVE (20 MARKS)

Show that the total differential equation is integrable and hence solve

$$yz(y+z)dx + zx(z+x)dy + xy(x+y)dz = 0$$
(20 marks)